Go for it, Sister

It’s a “light drug” everybody uses it

No harm

Rally?

There are some facts for the opposite
Cannabis; epidemiological, neurobiological and psychopathological issues: an update

• Clinical evidence supports the current socio-epidemiological alarm concerning the increased consumption among youngsters and the risks related to the onset of psychotic disorders.
• The mechanism of action of cannabis presents some analogies with other abused drugs, e.g. opiates.
• It has been well demonstrated that intake in adolescence may facilitate the transition to the use and/or abuse of other psychotropic drugs, hence properly being considered a 'gateway drug'.
• The highest prevalence of cannabis use and the social perception of a relatively low associated risk are in contrast with current knowledge based on biological and clinical evidence.
• There are concerns relating to cannabis intake association with detrimental effects on both cognitive impairment and mental health.
The effects of synthetic cannabinoids on executive function

- Synthetic cannabinoid products have effects similar to those of natural cannabis but **the new synthetic cannabinoids are more potent and dangerous** and their use has resulted in various adverse effects.

- **Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall).**

- They have also shown **higher ratings of depression and anxiety** compared with both recreational and non-users groups.

- This study showed **impairment of executive function in synthetic cannabinoid users** compared with recreational users of cannabis and non-users.
Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: an evaluation of the cannabis 'amotivational' hypotheses

- Both acute and chronic cannabis use have been associated with apathy, amotivation, and other reward processing deficits. To date, empirical support for these effects is limited, and no previous studies have assessed both acute effects of Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), as well as associations with cannabis dependence.
- Cannabis acutely induced a transient amotivational state and CBD influenced the effects of THC on expected value.
- In contrast, cannabis dependence was associated with preserved motivation alongside impaired reward learning, although confounding factors, including depression, cannot be disregarded.
Evidence for the Risks and Consequences of Adolescent Cannabis Exposure.

- We examine the four neuropsychiatric outcomes that are likely most vulnerable to alteration by early cannabinoid use, as identified within both the clinical and preclinical research: cognition, emotional functioning, risk for psychosis, and addiction.
- A strong correlation between adolescent cannabinoid exposure and persistent, adverse neuropsychiatric outcomes in adulthood.
- A strong association is found between early, frequent, and heavy adolescent cannabis exposure and poor cognitive and psychiatric outcomes in adulthood, yet definite conclusions cannot yet be made as to whether cannabis use alone has a negative impact on the human adolescent brain.
Acute and Chronic Effects of Cannabinoids on Human Cognition-A Systematic Review

- Cannabis use has been associated with impaired cognition during acute intoxication as well as in the unintoxicated state in long-term users.
- Verbal learning and memory and attention are most consistently impaired by acute and chronic exposure to cannabis.
- Psychomotor function is most affected during acute intoxication, with some evidence for persistence in chronic users and after cessation of use.
- Impaired verbal memory, attention, and some executive functions may persist after prolonged abstinence, but persistence or recovery across all cognitive domains remains under-researched.
- Associations between poorer performance and a range of cannabis use parameters, including a younger age of onset, are frequently reported.
Cannabis is by far the most widely cultivated, trafficked and abused illicit drug. Estimations are that 200-300 million people world-wide use cannabis on regular basis.
Cannabis
Marijuana
Hashish
Charas/Jaras
THC
Cannabis – short time effects

- Sedation and tranquility
- Euphoria
- Increased appetite ("Munchies")
- Changes in thought process changes
- Changes in time perception
- At high doses – auditory and visual hallucinations
- Anxiety may appear even during a 1 time use
Upon prolonged or “heavy” use

- Increasing probability of psychotic symptoms
- The psychosis is usually acute and transient, but prolonged ones have been described
- Cannabis associated psychosis includes affective symptoms (Manic or depressive or mixed), psychomotor agitation and non-coherent speech
- Use during developmental phase increases likelihood of schizophrenia
intermittent explosive disorder

• At times, develops upon discontinuation of Cannabis
• Many of these patients return to use cannabis in order to help control their behavior
Cannabis and addiction

• Withdrawal symptoms appear about 8 hours after use, and may persist for 2-3 days
• Symptoms: anxiety, insomnia, nausea, anorexia, muscle aches
Too many mental health and non-mental health professionals tend to see cannabis as “a light drug”

This “trendy” approach is supported by Media, parts of society, and some politicians
The functional effects of some synthetic cannabinoids vs. Δ⁹-THC on body temperature, nociceptive threshold, anxiety, cognition, locomotor and exploratory parameters, and depression in mice.
The effect of synthetic cannabinoids and Δ9-THC on memory function and spatial learning as measured in the Y-maze paradigm.
The effect of synthetic cannabinoids and Δ9-THC on locomotor activity as measured in the staircase test
The effect of synthetic cannabinoids and Δ9-THC on exploratory behavior as evaluated in the staircase paradigm and measured by the rearing events during the test.
The effect of synthetic cannabinoids and Δ9-THC on gait balance and grip strength measured by the latency to fall from a rod when mice were suspended with all four limbs (A,C,E,G) and just the two forelimbs (B,D,F,H), respectively.
The effect of synthetic cannabinoids and Δ9-THC on depression-like behavior as was evaluated in the forced swimming test and measured by the percent of immobility time during the test.
Thank you

I will take questions now